The impact of organic carbon and ammonia load in wastewater on ammonia-oxidizing bacteria community in activated sludge.

نویسندگان

  • Agnieszka Cydzik-Kwiatkowska
  • Irena Wojnowska-Baryła
چکیده

The experiment was carried out in two SBR reactors differing in ammonia load (reactor RI--ammonia load of 130 mg N-NH4 x d(-1), reactor R2--ammonia load of 250 mg N-NH4 x d(-1)). Feeding conditions in the reactors were switched from favoring autotrophic nitrification through favoring heterotrophic processes and back to autotrophic conditions. Observations of ammonia-oxidizing bacteria (AOB) community changes were based on PCR-RFLP analysis of amplified amoA gene fragments and AOB genetic diversity was evaluated on the base of the number of different amoA gene forms. When only carbonates were introduced with wastewater restriction patterns established about day 23 and 28 at ammonia load of 250 and 130 mg N-NH4 x d(-1), respectively. In both reactors statistically higher number of different amoA gene forms was observed when only carbonates were present in wastewater in comparison to conditions in which sodium acetate was introduced to the reactors. The AOB participation in activated sludge was higher at ammonia load of 250 mg N-NH4 x d(-1) but their genetic diversity was lower in comparison with this observed at ammonia load of 130 mg N-NH4 x d(-1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of Multiwalled Carbon Nanotubes on Nutrient Removal from Wastewater and Bacterial Community Structure in Activated Sludge

BACKGROUND The increasing use of multiwalled carbon nanotubes (MWCNTs) will inevitably lead to the exposure of wastewater treatment facilities. However, knowledge of the impacts of MWCNTs on wastewater nutrient removal and bacterial community structure in the activated sludge process is sparse. AIMS To investigate the effects of MWCNTs on wastewater nutrient removal, and bacterial community s...

متن کامل

Communities of Ammonia-oxidizing Archaea and Bacteria in Enriched Nitrifying Activated Sludge

In this study, communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in nitrifying activated sludge (NAS) prepared by enriching sludge from a municipal wastewater treatment plant in three continuous-flow reactors receiving an inorganic medium containing different ammonium concentrations of 2, 10, and 30 mM NH4-N (NAS2, NAS10, and NAS30, respectively) were investiga...

متن کامل

Differential sensitivity of nitrifying bacteria to silver nanoparticles in activated sludge.

Nitrification is known as one of the most sensitive processes affected when activated sludge is exposed to antimicrobial silver nanoparticles (AgNPs). The impact of AgNPs and their released silver ions (Ag(+) ) on the abundance, activity, and diversity of different nitrifying bacteria in wastewater treatment plants (WWTPs), however, is poorly understood. The present study investigated the impac...

متن کامل

Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge

Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wast...

متن کامل

Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria.

This study examined the biodegradation potential of three wastewater micropollutants (triclosan, bisphenol A, and ibuprofen) by Nitrosomonas europaea and mixed ammonia-oxidizing bacteria in nitrifying activated sludge. N. europaea could degrade triclosan and bisphenol A, but not ibuprofen. The degradation was observed only in the absence of allylthiourea (an inhibitor for ammonia monooxygenase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Polish journal of microbiology

دوره 57 3  شماره 

صفحات  -

تاریخ انتشار 2008